翻訳と辞書
Words near each other
・ Holomek
・ Holometabolism
・ Holometer
・ Holomictic lake
・ Holomorph
・ Holomorph (mathematics)
・ Holomorphic curve
・ Holomorphic discrete series representation
・ Holomorphic embedding load flow method
・ Holomorphic function
・ Holomorphic functional calculus
・ Holomorphic Lefschetz fixed-point formula
・ Holomorphic sheaf
・ Holomorphic tangent space
・ Holomorphic vector bundle
Holomorphically convex hull
・ Holomorphically separable
・ Holomovement
・ Holomycota
・ Holon
・ Holon (album)
・ Holon (disambiguation)
・ Holon (Equinox album)
・ Holon (philosophy)
・ Holon (physics)
・ Holon (sculpture)
・ Holon Children's Museum
・ Holon Institute of Technology
・ Holon Junction Railway Station
・ Holon Toto Hall


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Holomorphically convex hull : ウィキペディア英語版
Holomorphically convex hull
In mathematics, more precisely in complex analysis, the holomorphically convex hull of a given compact set in the ''n''-dimensional complex space C''n'' is defined as follows.
Let G \subset }(G) stand for the set of holomorphic functions on G. For a compact set K \subset G, the holomorphically convex hull of K is
: \hat_G := \ f \in .
(One obtains a narrower concept of polynomially convex hull by requiring in the above definition that ''f'' be a polynomial.)
The domain G is called holomorphically convex if for every K \subset G compact in G, \hat_G is also compact in G. Sometimes this is just abbreviated as ''holomorph-convex''.
When n=1, any domain G is holomorphically convex since then \hat_G is the union of K with the relatively compact components of G \setminus K \subset G. Also, being holomorphically convex is the same as being a domain of holomorphy (The Cartan–Thullen theorem). These concepts are more important in the case ''n'' > 1 of several complex variables.
==See also==

* Stein manifold
* Pseudoconvexity

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Holomorphically convex hull」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.